Test 1 / Numerical Mathematics $1 /$ May 9th 2023, University of Groningen

## Instructions

- You have 2 hours to complete the test. When applicable, people with special facilities have 2 h 20 minutes in total.
- The exam is "closed book", meaning that you can only make use of the material given to you.
- The grade will be computed as the number of obtained points, plus 1 .
- Write the answers to Exercises 1 and 2 on separate sheets.

Consider an arbitrary scalar function $g \in C^{3}([a, b])$.

## Exercise 1

(a) 1.5 Prove that a function approximation method defined via a linear polynomial $z(x)$ such that $g^{\prime}(a)=z^{\prime}(a)$ and $g(b)=z(b)$ has the form

$$
\begin{equation*}
z(x)=g(b)+g^{\prime}(a)(x-b), \quad x \in[a, b] . \tag{1}
\end{equation*}
$$

(b) 0.5 Assume you want to approximate $g(x)=\sin x$ in the interval [ $0, \pi$ ]. Draw both $g(x)$ and $z(x)$.
(c) 1.5 Assume now that the "measurements" of the function $g$ and its derivative are obtained with an additive perturbation $\varepsilon$ and $\delta$, respectively, i.e. $\hat{g}=g+\varepsilon$ and $\hat{g}^{\prime}=g^{\prime}+\delta$. Denote the approximation under perturbations $\hat{z}(x)$. Find an upper bound for $z(x)-\hat{z}(x)$ for all $x=[a, b]$, but where neither $x$ nor evaluations of $g$ and its derivative(s) appear in the bound.
(d) 1 Assume you want to approximate $g(x)=\sin x$ in the interval [ $0, \pi$ ], now using piecewise polynomial approximations based on the approximation method derived in Question (a) using two subintervals. Draw both $g(x)$ and the piecewise approximating functions. Do you expect convergence in the approximation if more subintervals are added? Justify using qualitative arguments, for example by drawing the approximation using three subintervals.

## Exercise 2

(e) 1.5 Obtain a numerical integration formula based on the global approximating polynomial of Equation (1).
(f) 2 Determine the degree of exactness of that numerical integration method from Question (e).
(g) 1 Derive a composite integration formula from the method in Question (e), assuming you have a grid of nodes $x_{0}, \ldots, x_{n}$. Would the composite numerical integration converge to the exact integral if one would drop the term containing the evaluation of the function derivatives? (answer qualitatively)

